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Abstract-Cylindrical, differentially heated and horizontal enclosures are commonly used in technological 
processes. A knowledge of the flow patterns in such a system is important for process optimization. In the past, 
flow predictions have often been made by using an asymptotic analytical approximation in the core, or by 
assuming a two-dimensional solution for the plane of symmetry. Laser Doppler anemometry studies, recently 
conducted by Schiroky and Rosenberger, have shown that in reality the free convection flows in the above 
configuration are highly three-dimensional. Here we compare the results for the vertical midplane obtained 
from the experiments and from 3-D numerical solutions with solutions of the aforementioned approximations. 
Both the core-driven and boundary layer-driven regimes are considered. In general the approximations give 
the correct Rayleigh-number-dependence of the velocities in the two regimes. However, the transition between 
the regimes and the magnitude and distribution of the velocity components were found to significantly depend 

on the 2-D approximation used. 

1. INTRODUCTION 

THE FREE convection in shallow rectangular cavities 
(boxes) and horizontal cylinders with differentially 
heated end walls has been studied experimentally, 
analytically and numerically by many workers. Part of 
this interest is due to the importance of these convective 
configurations in liquid- and vapor-phase crystal 
growth [ 141. Analytical solutions for long rectangular 
cavities, based on a parallel flow approximation, were 
first proposed by Birikh [S], Hart [6], and Klosse and 
Ullersma [l]. The interaction between free convection 
and a net flow (forced diffusion) across cylindrical or 
two-dimensional (2-D) cavities was studied numeri- 
cally by Rosenberger et al. [7-lo]. Most of the recent 
work on free convection in closed shallow cavities is due 
to Bejan, Cormack, Imberger, Kimura, Shih, Tien et al. 
[ll-201,Ostrachetal. [21,22] andHart [23].Thecore 
flow theory of Bejan and Tien [ 14,151 was extended to 
higher Rayleigh numbers with simplifying models for 
the flow near the end walls of 2-D cavities [24] and 
cylinders [25]. Experiments on rectangular cavities 
[26] and horizontal cylinders [25] have demonstrated 
the applicability of Gill’s theory for free flow near 
vertical infinite plates [27] to the end regions of these 
confined geometries. Recently, laser Doppler anemo- 
metry studies [25] have shown that both in the core- 
and boundary-layer-driven regimes (CDR and BLDR) 
the flow in cylinders is highly three-dimensional, in 
contrast to the flow in rectangular boxes [17, 223. 
Similar to the observations in boxes, however, it was 
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found that the core flow in the cylinder tilts with respect 
to the horizontal on transition to the BLDR. Extensive 
2-D numerical work has been aimed at predicting the 
transition between the two governing regimes [ 11,19, 
20,28-301. In our recent 3-D numerical modeling of 
free convection in cylinders [31] good agreement was 
obtained with the complex flow observed experimen- 
tally [25]. 

The aim of the present paper is a comparison of the 
flow characteristics for the CDR and BLDR in 
rectangular cavities and cylinders of aspect ratio a = 5 
at Pr = 0.73. The aspect ratio is here defined as the 
horizontal length of the enclosure divided by the height 
of the heated end walls, i.e. a = LJH and a = Lf2R, for 
the rectangular cavity and cylinder, respectively. The 
comparison is based on the experimental, analytical 
and numerical results for the characteristic velocity 
distributions, the velocity boundary-layer thickness in 
the end regions and the temperature gradient in the 
core. Emphasis is put on the question of the validity of 
2-D models for the flow in the vertical midplane of the 
cylinder. A similar comparison for tall rectangular 
boxes (a < 1) has been put forth by Mallinson and De 
Vahl Davis [32]. 

2. PHYSICAL MODELS 

The two geometries of interest, a shallow rectangular 
cavity ofheight H and a cylinder with radius R,, both of 
length L, are schematically depicted in Fig. l(a). The 
vertical end walls are differentially heated to Tc and Th, 
with T. > T=. The horizontal walls are assumed to be 
perfectly conducting. The physical parameters that 
govern the flow are contained in the Prandtl number Pr 
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NOMENCLATURE 

;: 

aspect ratio, a = L/H or L/2R, 

constant defined in Section 3.3, 
dimensionless 

c Gill’s free constant defined in Section 
3.3, dimensionless 

c constant defined in Section 3.2 for 
equation (7) 

I 
gravitational acceleration [m s - 2] 
characteristic length in Ra, h = H/2 or 

&Cm1 
H height of rectangular enclosure Cm] 
k dimensionless parameter, equation (15) 

k, core parameter (dimensionless axial 
temperature gradient) 

k,=if!!=Hi? or ;;; 

2az 2ATaf 

k, dimensionless constant, equation (9) 
L length of the rectangular cavity of 

cylinder [m] 
m dimensionless parameter, equation (15) 
Pr Prandtl number, V/K 

Q dimensionless parameter, equations (4) 

and (6) 
r, r dimensional [m] and dimensionless 

radial position, r = F/R,, 

Ro radius of cylinder [m] 
Ra Rayleigh number, agATh3Pr/v2 

Ra, critical Ra for transition from CDR to 
BLDR 

T dimensional temperature [K] 
Th, z temperatures at the hot and cold walls 

IX1 
G reference temperature 1/2(Th + TJ [K] 
AT x-z[K] 

W w velocity components in x-, z-directions 
[m s-l] 

u, 0, w velocity components in r-, +-, 
z-directions [m s - ‘1 

u, w dimensionless velocity components in 
x-, z-directions, u = iiH/21c, w = $H/~K 

u, D, w dimensionless velocity components in 
r-, 4; z-directions, u = tiRO/~, 

v = ORo/rc, w = WRO/~ 
- - 
4 z position components [m] 

x, z dimensionless position components, 
x = 2%/H or 3/7/R, and z = 2f/H or f/R, 

i dimensionless axial position, equations 
(12) and (15). 

Greek symbols 
a coefficient of volumetric thermal 

expansion [K - ‘1 

B dimensionless vertical temperature 
gradient in the middle of the enclosure, 
a se/ax 

; 
extent of end region, dimensionless 
characteristic flow thickness defined in 
Section 5.4 [m] 

& dimensionless function defined in 
Section 3.2 

K thermal diffusivity [m’ s- ‘1 

Y dimensionless parameter, equation (5) 

; 

kinematic viscosity [m* s - ‘1 
azimuthal position component 

P dimensionless parameter, equation (15) 
e dimensionless temperature, 

2(F- To)/AII: 

Subscripts 
C critical 
max maximum. 

Superscripts 
cond conduction regime 
bl boundary-layer regime 
2D, 3D Two- and three-dimensional. 

Abbreviations 
BLDR boundary-layer-driven regime 
CDR core-driven regime. 

and Rayleigh number Ra, based on a characteristic 
length h, which is taken as R. for the cylinder and H/2 
for the cavity. 

T _ f-+,Th H T_ 
The coordinates X and Z for the cavity are oriented 

vertically and along the symmetry axis, respectively, 
and are associated with the velocity components C and 
W. The cylinder coordinates i; &and i are radially, 
azimuthally and axially oriented with the correspond- 

- - 
ing velocity components II, v and 3. For the following 
analyses the coordinates and velocities are non- 
dimensionalized as defined in the Nomenclature. The 
vertical midplane, which is also the symmetry plane for 0 

the flow in the cylinder, is defined by 0 d r < 1, 
FIG. l(a). Differentially heated horizontal, rectangular cavity 

0 < z < 2a, 4 = 0 and n [Fig. l(a)]. The overall 
and cylinder: definition sketch for dimensions, position 

coordinates and velocity components. 
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FIG. l(b). Schematic presentation of overall flow pattern in 
differentially heated, horizontal cylinder. 

characteristic of the flow, as derived from the 
experimental results [25] and an analysis of the 
computed solution [33], is schematically given in Fig. 
l(b). One sees that in the end regions only part of the 
fluid flows along the cold (hot) vertical wall into the 
lower (upper) half of the cylinder. The remaining part 
changes the flow direction by dropping (rising) at the 

side wall over a considerable distance from the 
respective end wall. 

3. ANALYTICAL MODELS 

Analytical approximations for the velocity protile 
are available for the core of differentially heated 
rectangular cavities and cylinders. These approxima- 
tions are based on temperature gradient parameters 
derived from experiments and analyses. 

3.1. Corejlow velocities 
Parallel flow solutions, valid for the core of 

rectangular cavities and long cylinders, were proposed 
by Klosse and Ullersma Cl], Birikh [S], Hart [6], and 
by Bejan and Tien [14,15]. Elaborate approximations, 
allowing for secondary flows in cavities, were given by 
Cormack et al. [12]. The existence of these secondary 
flows was experimentally confirmed by Ostrach et al. 
[22]. Bejan and Tien [IS] and Shih Cl83 included some 
interaction with the end regions. These core solutions 
are still limited to the S-shaped profile for the 
horizontal velocity component. Further improve- 
ments, which remove this limit for higher Ra 
conditions, are due to Tichy and Gadgil [24]. For 
cylinders, Schiroky and Rosenberger [25] proposed a 
third-order power series in Ra which well predicts the 
shift of the maximum in the core velocity towards the 
wall for the low R&range of the BLDR regime. 

The analytical expressions for the core flow 
(horizontal velocity) used in our comparison are given 
in Table 1 and are numbered (l)-(3). They depend on 
the core parameter (axial dimensionless temperature 
gradient) k,. 

3.2. Determination of kr 
3.2.1. For rectangular cavities. For the CDR up to 

the beginning of the BLDR, Cormack et al. [ 123 derived 
an expression for k, in terms of Ra’ and a [relation (4) in 
Table 21. For the fully developed BLDR, Bejan and 
Tien [15] proposed a Ra- ‘/’ dependence [relation (5)]. 
More recently, Hart [23] derived from Cormack et al.‘s 
work an expression for kr that is valid for the whole 
CDR and BLDR range [relation (6)]. The expression is 
implicit but, for large values of Ra, one recovers the 

Table 1. Analytical expressions for the dimensionless horizontal core velocity 

Power series approximations 
Equation Geometry 1st order 3rd order References 

(1) Rectangular wZD 
cavity 

t k,Ra (x2 - 1)x 
::; 
C61 

Cl51 

(2) Cylinder WSD - i k, Ra cos 4(r2 - 1)r Cl41 

(3) Cylinder W3D -$k,Racos&r’-l)r - (k&I3 143 3 

1,474,56OPr K 
__--_r’O+-p 

1680 4 

21 12.5 201 4 
-zr6+qgr4-Gr2 +z 

> 
rcos4 

+ ~r++;r++~ ( > 
x r3 cos3 4 

1 
VI 
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Table 2. Expressions for k, 

Equation Regime Approximation Parameter 
Wall 

condition References 

1 
(4) CDR and k, = - (1 - 128Q Raz/a3) 

2a 
106Q = 1.74 conducting Cl21 

beginning 
of BLDR 

(5) BLDR k, = 8.75 y1”oRa-3’5 y= 1.0 insulating cw 
(6) CDR 1024Ra’Qk:f2ak, = 1 1O”Q = 1.7G2.23 conducting c231 

and BLDR 

explicit relation 

k, = (1024Q)-“3Ra-2’3, 

which is independent of a, as Bejan and Tien’s relation. 
Note that all these expressions, given in Table 2, depend 
on some adjustable parameters that are connected to 
some mean properties of the flow. Values of these 
parameters have been numerically obtained by the 
authors listed, by solving the 2-D governing equations 
with finite-difference techniques. 

3.2.2. For cylinders. The end-integral method has 
been applied to the determination of k, in rectangular 
cavities by Bejan and Tien [15,34]. Here we outline its 
application to the cylinder, for details see [35]. 

The governing equations in cylindrical coordinates 
are given in the literature [ 14, 181. Assuming centro- 
symmetry and parallel flow in the core, the velocity field 
is given by u = u = 0 and the first-order power series 
term for w (Table 1). For the region at the cold end 
defined by 0 < z < 6, velocity profiles are assumed for 
u, v and w which obey the no-slip condition on the walls 
and match the core solution at the arbitrarily chosen 
z = 6 with zero slope. The following profiles fulfill the 
continuity equation 

(7a) 

The temperature profile can then be written as 

1+2c 
r4-3r2+2p 

l+c 
rcosf$ 

+2k, e+2k1z-1, (7b) 
1 

where E = 1 in the core, and in the end region 

EC 2-z z ( > 6 6’ 

The coefficient c in (7b) is zero for conducting walls and 
c + cc for adiabatic walls. The thermal boundary 
conditions in the core (i.e. at z = 6) are then matched 
with a slope related to kl. For this one assumes the 
centro-symmetric temperature field 

2k2 = l-2kra. (9) 

An integration of the energy equation over 0 < z < 6, 
0 < r < 1 and 0 < 4 < 2n then yields 

0.00233Razk~ - 12.566kJ6 = 0. (10) 

After eliminating the pressure between the radial and 
axial momentum equation, and the azimuthal and axial 
momentum equations, respectively, the two resulting 
equations are combined to yield a unique momentum 
condition. Integration within the above limits then 
gives 

0.8378k,6 + 2.0944k, -0.6732k,/i3 = 0. (11) 

The integration of the energy and momentum 
equations was performed by using the algebraic 
computer language REDUCE [36]. While it is not 

Table 3. Analytical expressions for the vertical flow 

Equation Solution Regime References 

(12) u(i) = k (sin mi cash mi - p cos mi sinh mi) 
a 

c371 
[3gl 

(13) conducting 
(small Ra, 
m + 0) 

(14) u(r) = -,f&ZRa’~* sin y e-mr/o O<.Z<c boundary 
layer 
(high Ra, 
m >> 1, 
b = ab) ~271 
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FIG. 2. 

lo2 lo3 lo4 lo5 lo8 10’ 
RAYLEIGH NUMBER 

Calculated dimensionless axial temperature gradient vs Rayleigh number for differentially 
cylinder with conducting and insulating walls, respectively. 

heated 

possible to give an explicit expression for k,, it can be 
numerically evaluated from equations (9)-(11). The 
resulting values of k, are plotted vs Ra in Fig. 2, for 
conducting and adiabatic conditions and a = 5. Shih 
[18] also attempted to calculate k, for the cylinder with 
the end-integral technique. However, his assumed 
velocity profiles for the end regions do not satisfy all 
boundary conditions and violate the continuity 
equation. 

3.3. Verticalflow along dijiientially heated walls 
Assuming steady-state parallel flow and weak 

vertical diffusion of temperature, Elder [37] has 
obtained the first similarity solution for free convection 
between two parallel vertical plates. The solution, 
denoted (12), is given in Table 3, together with the two 
asymptotic limits corresponding to the conduction 
regime [solution (13)], and the boundary-layer regime 
[solution (14)] obtained by Gill [273. Following Vest 
and Arpaci 1381 the new parameters in Table 3 are 

i = z/a - 1, m = (a’jIRa/8)“*, 

k=- ~(cosmsinhm+psinrncoshm)-l, 

p = tan m/tanh m. (15) 

The solution (12) needs to be complemented by a 
relation between the thermal stratification parameter 
in the vertical direction, /I and the aspect ratio a. From 
numerical results of Thomas and De Vahl Davis [39] 
and Roux et al. [40,41] follows 

B - % 7.6 x 10-4(a4.2sRa) I.” 
a 

for a4.25 * Ra 5 50 

B - x 0.8 for 
a 

a4.25 - Ra 2 50. (16) 

In (14) the coefficient c is a fitting parameter. From 
numerical results for a square cavity (a = l), c = 0.8 

[41]. From Elder’s theory it follows that c2 = l/2,/& 
where b results from the boundary-layer relation 
b/a = b. From (16), b = 0.8 and, hence, c = 0.748. 

4. EXPERIMENTAL AND NUMERICAL WORK 

4.1. Experimental data [25] 
Experimental results were obtained for a gas-filled 

cylinder with a = 5 (R, = 1 cm, L = 10 cm). The end 
wall temperatures were t = 27°C and r, = 89°C. The 
velocity field was determined by laser Doppler 
anemometry. The Rayleigh number was varied 
through the pressure and composition of the gas fill 
(0.68 < Pr G 0.86) from 74 Q Ra Q 1,283,OOO. Centro- 
symmetry was observed for the velocity field within 
experimental resolution. This is somewhat at variance 
with our more recent measurements of the axial 
temperature distribution, that reveal a certain 
asymmetry between the hot and cold regions 1311. Such 
an asymmetry can be expected from the thermal 
expansion of the gas and/or variations of the physical 
properties as numerically shown for a rectangular 
cavity by Leonardi and Reixes [42], but can also be due 
to heat losses mainly at the hot end as shown by 
Leonardi [43]. 
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Table 4. List of reported numerical methods 

Method Model 
Governing 
hypotheses Formulation Method 

Variables 
References (r, 4, z)/(x, z) 

I 3D 

II 2D 

III 2D 

IV 2D 

Boussinesq ; 
constant 
properties 

Boussinesq ; 
constant 
properties 

Boussinesq ; 
constant 
properties 

Compressible ; 
constant 
properties 

vorticity, 
velocity 

vorticity, 
stream 
function 

vorticity, 
stream 
function 

primitive 
variables 

centered finite-differences 
Samarskii-Andreev scheme 
false transient 

Hermitian finite-differences 
AD1 scheme 
false transient 

pseudo-spectral-Tau- 
Chebyshev 
Adam-Bashforth/semi-implicit 
scheme ; instationary 

TEACH method 

c451 
C461 
c301 

c471 
C481 
c411 
c491 

c501 
c511 
c521 

Cl01 

9 x 32 x 33,65 
uniform grid 
spacing 

21 x 41,101 
uniform grid 
spacing 

10x14 
to 12 x 27, 
collocation 
points 

16x32 
two different 
uniform grid 
spacings 

4.2. Numerical methods 
The numerical works for rectangular cavities (2-D) 

and cylinders (3-D), that we will use in the comparison 
below, are listed in Table 4 together with the essential 
features of the approaches taken. 

5. PRESENTATION AND DISCUSSION OF 
RESULTS 

The governing parameter in all core-flow theories is 
the horizontal stratification parameter kr. Hence,it will 
be discussed first. Although these theories become less 
and less meaningful as Ra increases, kl can still be 
considered as a variable that is characteristic for the 
thermal state in the enclosure. Then, we will discuss 

the Ra-dependence of the magnitude and profile of the 
velocities in the core and end regions, for which, at high 
enough Ra, one obtains boundary-layer behavior. 

5.1. Temperature gradient in the core 
The results for 

k =!_!! =!!_!?!?? or 
( 

H aT 

1 2aZ -- AT a? 2AT a.f > 

are plotted in Fig. 3. They refer to the experimental, 
analytical and numerical works listed in Table 5. The 
3-D results for the cylinder correspond to a = 5, 
experimental details are given in [25, 351 and the 
computational approach is described in [31, 331. The 

i 

10 I III I III I III I III I III I III 

10 lo2 1 o3 10’ lo5 lo6 10’ 

RAYLEIGH NUMBER 

FIG. 3. Dimensionless axial temperature gradient vs Rayleigh number for cylinders and rectangular cavities of 
various aspect ratios : comparison of experimental, analytical and numerical results. 
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Table 5. Experimental, numerical and analytical determination of k, 

Geometry 

Cylinder 

Approach 

experiments, 
numerical solutions, 
analytical 
solutions 

Aspect ratio 

5 

Pr References 

0.68485 
# 

Rectangular 
box 

Rectangular 
cavity 

experiments 

analytical 
results 
computations 

50,100 6.98 Cl31 
5, 10 960,191o WI 

5, 10 WI 
Cl51 

5,10, 50, 100 ~231 
5, 10, 20 6.98 Cl11 

5.56 0.526 CW 
1 0.71 r.411 

amount ofdataforthe2-Dproblemismuchlarger,with 
aspect ratios ranging from 100 to 1 and with Pr varying 
between 0.5 and 1900 [ll, 13,21,41,44]. 

The relations (4)(6) given in Table 2 for the 2-D case 
are plotted in Fig. 3. A comparison of experiments and 
computations at large Ra shows fair agreement for the 
onset of the BLDR and the a-independence. The results 
for the transition to the BLDR for a = 5, 10 [ll, 211 
derived from (6) [23] approximate the experimentally 
and numerically obtained k,s better than (4) [12]. In 
the fully-developed BLDR, the data obtained for 
1 < a < 100 lie roughly between the curves obtained 
from (5) and the explicit relation derived from (6) at 
large Ra in Section 3.2.1. The last result thus forms a 
lower limit for k, vs Ra. 

For cylinders, the results derived from Section 3.2.2 
for a = 5 with conducting side walls show that ki 
decreases much slower with increasing Ra than for the 
2-D case. At a given Ra (in BLDR) the kl from the 3-D 
analytical estimate, [35] and Fig. 2, is about 1.6 times 
larger than from 2-D analysis. However, as compared 
to the 3-D numerical and experimental results, the 3-D 
analytical k, result is still roughly three times too small 
at Ra = 18,700. For Ra c 30,000 the experiments and 
numerical predictions agree quite well. Interestingly, 
the transition from CDR to BLDR occurs ‘in reality’ 
(3-D experiments and numerical modeling) at about 10 
times higher Ra than in the 2-D systems. The value of 
k, is then 2-5 times larger than the k, derived from 
2-D considerations. 

5.2. Velocity in the core region 
Analytical solutions for the maximum values of the 

horizontal velocity component w can be derived from 
(1) and (2), Table 1, respectively, as 

IwZl = Ra 
9$ 

at x=+- 
$ 

(17) 

and 

Iwzl = Ra at 
l2fi 

r = 1 for 4 = 0, x. 
fi 

(18) 

The relations (17) and (18), evaluated with the 

HKT 29:2-E 

(a) The experimental and 3-D numerical results 
(method I in Table 4) agree well over the whole 
range covered by the numerical data, i.e. 
74 5 Ra 5 30,ooO. The 2-D numerical results 
(methods II, III and IV), however, show significant 
deviations from these 3-D results, not only-as 
expected-in the CDR but also in the BLDR. 

(b) 

(c) 

(4 

(4 

The 2-D numerical ‘compressible solutions’ 
(method IV) are in good agreement with the 
solutions obtained from the Boussinesq approxim- 
ations (methods II and III) in the range of Ra values 
for which computations were carried out. 
At low Ra (in the CDR) both 3-D analytical 
solutions, (2) and (3), yield good predictions. The 2- 
D solution (17), though correctly reflecting the 
linear dependence of w,, on Ra, overestimates the 
velocity by about 30% with respect to the cylinder ; 
see the ratio of (17) and (18). This reflects the 
increased frictional interaction of the flow due to 
the relatively larger wall area of the cylinder. 
At high Ra (i.e. in the BLDR) the experimental and 
3-D numerical results for the core velocity vary as 
Ra”‘, parallel to Gill’s boundary-layer relation (14) 
for u, see also Fig. 9. The velocity in the cylinder is 
about 1.5 times larger than the 2-D numerical 
solution, which, however shows a realistic Ra- 
dependence. The velocities obtained from the 
analyticalsolutions(l8)and(3) with krsdetermined 
by (9)-(11), are too low. Their Ra-dependence is 
Ra0.40 and Ra0.44, respectively. 
If we define a critical Ra, for the transition between 
CDR and BLDR, then we find from Fig. 4 that for a 
= 5, RazD z 2000 whereas RazD z 6000, i.e. a 
factor of about 3 between 2-D and 3-D behaviors. 

conduction condition kl = (2a)- ’ for a = 5, are plotted 
in Fig. 4 together with the experimental and numerical 
results. In addition, Fig. 4 contains plots of (18) and 
the corresponding relation derived from (3), both 
evaluated with the analytical values obtained for k, 
from (9)-(11); see also Fig. 2. 

An analysis of these curves, together with the 
experimental and numerical data plotted in Fig. 4, 
results in the following observations : 
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lo3 ’ “‘1 ’ “‘1 ’ ‘1” ’ “‘I ’ ‘1 

____I i 2-D (17) - 

3-D (181, 3-D (31 

A 3-D exper. [25] 

0 3-D numer. [31] 

q 2-D numer., method III 

l 2-D numer.. method IV 

1 10 lo* lo3 10’ lo5 lo6 

RAYLEIGH NUMBER 

FIG. 4. Maximum value of dimensionless axial velocity (core velocity) vs Rayleigh number: comparison of 
experimental, analytical and numerical results. 

The above points are further illustrated in a series of 
w(r)-profiles for discrete, increasing Ras in Figs. 5-8. In 
Fig. 5 one sees that in the CDR (Ra = 660) the 3-D 
analytical results, i.e. (2) and (3), agree well with the 
experimental and numerical values. The 2-D numerical 
values (methods II, III and IV in Table 4) lie too high. 

At the upper end of the CDR (Ra = 3580, Fig. 6) the 
2-D and 3-D numerical results are in very good 
agreement with experiment. The analytical predictions 
(2) and (3), baaed on k,s obtained from (9)-(1 l), are too 
low. However, when (2) and (3) are evaluated with 
numerically obtained k,s [31], agreement in magni- 

4 

- 
* 

i 2 

3 

z 0 , 

ti 
= -2 
> 

< 
x -4 
a 

tude is restored, with (3) yielding a more realistic 
distribution. 

At Ra = 8860 (Fig. 7), the 2-D numerical and 3-D 
analytical velocity profiles differ strongly from each 
other and from experiment. Besides the different 
magnitudes, there are also distinctions into ‘S-shapes’ 
and ‘Z-shapes’. At this Ra the analytical approaches are 
simply unable to yield realistic results either with 
analytically or numerically obtained k, values. 

This trend is further emphasized by the results for 
Ra = 18,720 presented in Fig. 8. Yet it is noteworthy 
that the evolution of the Z-shape from the S-shape 

I I I I I I 1 I 

Ra = 660 

l 3-D numer., method I 

A 3-D exper. [25] 

x A + 2-D numer, methods II, III, IV 

- 3-D analyt. (21 

..-.... 3-D analyt. (3) 

I I I I I I I I 
-10 -8 -6 -4 -2 0 2 4 6 8 10 

RADIAL POSITION r Imml 

FIG. 5. Core velocity profiles for Ra = 660. 
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I I I I I I I I 

A 3-D exper. [25] 

--e 3-D numer., method I 

XA + 2-D numer.. methods II, Ill. IV 

-6LL 
-10 -8 -6 -4 -2 0 2 4 6 8 10 

RADIAL POSITION r (mm1 

FIG. 6. Core velocity profiles for Ra = 3580. 

(boundary-layer trend) occurs slower for 2-D than for 5.3. Velocity in the end regions 
3-D solutions. For all four figures one should point out, Analytical solutions for the maximum of the vertical 
however, the good agreement between experiment velocity component can be obtained from the limiting 
and 3-D numerical solutions obtained with only a cases of Elder’s general solution (12). From (13)and (14) 
9 x 32 x 33 mesh for r, 4 and z, respectively. of Table 3 we obtain for the conduction and boundary- 
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FIG. 8. Core velocity profiles for Ra = 18,700. 

layer limit, respectively, These relations, together with the experimental and 

114el = aZRa G/54 at $ z = 1 + 3 (19) 
numerical results, are plotted in Fig. 9. An analysis of 

a this figure reveals that 

and (a) experimental and 3-D numerical results agree fairly 

M!.f..l = c2 e -WRn112 at AZ = nc2-314~a-‘/4 
well in the CDR up to Ra e 2000 [see also (f) 
below] ; 

with c = 0.8. 

(20) (b) l1 a results show a proportionality to Ra up to 
Ra x 2000, parallel to w, obtained from (18), see 
also Fig. 4 ; 

I “‘I ’ “‘1 

0 3-D numer. 9x32x33 

v 3-D numer. 9x32x65 

0 n 2-D numer.. methods Ill, IV 

1 10 lo* lo3 10’ lo5 lo* 

RAYLEIGH NUMBER 

FIG. 9. Maximum value of dimensionless vertical velocity vs Rayleigh number : comparison of experimental, 
analytical and numerical results. 
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r 

Fro. 10. Characteristic thickness of horizontal and vertical flow vs Rayleigh number, derived from 
experimental, analytical and numerical data. 

the 2-D numerical results that are based on the 
Boussineaq approximation lie throughout their 
range (74 5 Ra 5 20,000) considerably above the 
experimental cylinder values ; 

(d) the comnressible solutions (method IV, Table 3) do 
not verify centro-symmetry but the difference does 
not exceed 5% in the end regions. Compressible 
results are below those for Boussinesq approxim- 
ations over the entire range of Ra. This is to be 
compared with the reduction of the convection 
velocity observed by Leonardi [43] with the 
introduction of variable density and viscosity. 
Above Ra = 10’ the compressible results have a 
dependence of Ra’.“, thus slightly exceeding the 
dependence found for the 3-D results. 
above Ra NN 6000 all results change from the linear 
behavior to an (approximate) R&*-dependence 
(Note that the 3-D numerical results correspond to 
the first mesh point inside the cylinder, i.e. to a larger 
distance from the wall than the location of urnaX, 
hence the low values.) 
the 2-D analytical relations (19) and (20) predict the 
transition to a boundary-layer-type flow to occur at 
Ra an order of magnitude too low. 

(4 

An analysis of the experimentally determined 
velocity profiles u(z) in the end region, was performed 
elsewhere [25]. It was found that at high Ras the shape 
and magnitude in the vertical midplane of the cylinder 
follow closely Gill’s relation (14), i.e. they exhibit 
boundary-layer behavior. 

5.4. Characteristicjlow thickness 
We define a characteristic flow thickness, 6 as the 

distance between a wall and the location of the 
maximum in the velocity component parallel to that 
wall. This parameter provides a different means of 
monitoring the transition from CDR to BLDR. For the 
end walls and side walls, respectively, we use the non- 
dimensionalized 

F(w) - and F(u) m 
2R, Or H L’ 

Figure 10 shows these parameters evaluated from the 
experimental and numerical data together with plots of 
the analytical solutions (19)-(20). Also we show the 
asymptotic location of F(w) corresponding to (3) in the 
form 

As can be expected from Figs. 5-8, the 3-D numerical 
characteristic flow thickness in the core agrees well with 
the experimental’ value up to the highest numerical 
point, Ra = 30,000. The velocity maximum is shifted 
towards the wall with increasing Ra. At very high Ras, 
the experimental F(w) tend towards the asymptotic 
relation (21) although the magnitude of the velocity 
maximum expected from (3) is much lower than the 
actual value; see e.g. Figs. 7 and 8. Also, for the 2-D 
numerical solution (17) the transition from the CDR 
occurs at higher Ra than for the 3-D solution. 
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The vertical thickness &)/L follows roughly a 
Ra- ‘I4 trend, as predicted by Gill’s analysis(20), both in 
the CDR and BLDR. This shows that in the end region 
the boundary-layer ‘structure’ sets in at rather low Ra, 
whereas the magnitude of the velocity maximum is still 
governed by the core mechanism up to Ra x 2000; see 
also Fig. 9. Note also that the 2-D and 3-D numerical 
solutions give similar values for &)/L although their 
values for the magnitude of the velocity are quite 
different. 

6. CONCLUSIONS 

The detailed comparison presented here shows that 
2-D approximations can present the flow in the vertical 
midplane of a horizontal cylinder only rather poorly. 

In the core driven flow regime both the core and 
the end region velocities are overestimated by typi- 
cally 30”/,, although the location of w,, is well 
approximated. 

In the boundary-layer driven regime, 2-D solutions 
show a more complex behavior : 

(a) core velocities are underestimated by typically 40- 
50% and the velocity profile is only poorly 
approximated with too little shift of the maximum 
towards the wall; 

(b) end velocities are overestimated by typically 30- 
40% with the actual velocity maximum again lying 
closer to the wall. 
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CONVECTION DANS LE PLAN MEDIAN DUN CYLINDRE HORIZONTAL- 
COMPARAISON D’APPROXIMATIONS BIDIMENSIONNELLES AVEC LES RESULTATS 

TRIDIMENSIONNELS 

R&m-Des enceintes chat&es, horizontales cylindriques sont couramment utilisCs dans l’industrie. La 
connaissance des configurations d’bcoulement dans un tel systeme est importante pour l'optimisation du 
process. Dans le passe, les predictions d’ecoulement ont Cti souvent faites en utilisant une approximation 
analytique asymptotique dans le coeur, ou en supposant une solution bidimensionnelle pour le plan de 
symbtrie. Des etudes d’anemonetrie Laser Doppler, recemment faites par Schiroky et Rosenberger, montrent 
que les Ccoulements de convection naturelle sont fortement tridimensionnels. On compare ici les resultats 
obtenus, pour le plan median vertical, par les experiences et par les solutions numeriques 3D, avec les 
approximations citees. On considtre a la fois les regimes gouvernts par le coeur et ceux par la couche limite. En 
general, les approximations donnent la dependance correcte des vitesses avec le nombre de Rayleigh dans les 
deux regimes. Neanmoins la transition entre les deux regimes, le module et la distribution des composantes de 

vitesse sont trouvis nettement dipendre de l’approximation 2D utilisee. 

KONVEKTION AN DER SENKRECHTEN MITTELFLACHE EINES WAAGERECHTEN 
ZYLINDERS-VERGLEICH VON ZWEIDIMENSIONALEN NAHERUNGEN MIT 

DREIDIMENSIONALEN ERGEBNISSEN 

Znsanunenfaasung-Teilweise beheizte waagerechte zylindrische Hohlriiume werden in technischen 
Prozessen oft eingesetzt. Die Kenntnis der Striimungsvorglnge in solchen Systemen ist wichtig fur die 
Optimierung der Prozesse. Bisher wurden Str6mungsberechnungen oft mit Hilfe eines analytischen 
asymptotischen NIherungsverfahrens im Kern oder unter Annahme einer zweidimensionalen Lijsung fur die 
Symmetrieebene durchgefiihrt. Messungen mit Laser-Doppler-Anemometem, die kiirzlich von Schiroky und 
Rosenberger durchgeftihrt wurden, haben gezeigt, daB die Konvektionsstromungen bei der obigen 
Anordnung in Wirklichkeit ausgeprlgt dreidimensional sind. Wir vergleichen hier MeBergebnisse und 
dreidimensionale Rechenergebnisse mit den Liisungen der oben genannten Nlherungen. Sowohl Kern- als 
such Grenzschichtbereiche werden betrachtet. Generell liefem die N%herungen die richtige Abhangigkeit der 
Rayleigh-Zahl von den Geschwindigkeiten in den beiden Bereichen. Das Ubergangsgebiet zwischen beiden 
Bereichen sowie Betrag und Richtung der Geschwindigkeitskomponenten hiingen jedoch entscheidend von 

der Art der zweidimensionalen Naherung ab. 

KOHBEKHMCr B CPEAHEM KPYFOBOM CEHEHHH 1-OPMOHTAJIbHO 
PACI-IOJIO~EHHOl-0 HHJIHHJIPA. CPABHEHHE PE3YJIbTATOB TPEXMEPHbIX 

PEIIIEHHH C PEIIIEHHRMH ABYMEPHOH 3AJfAHH 

A~~TwRI+B TexHonorwwac~x npoueccax 06unnro npnMemnorcn unnmmpmmcxrre ropnsonranmtare 
nonocm c uepasiio~epno riarpesaeMbrr+fn cremcarwn. 3riarine ~~~KHMOB Te~emia B TaKoii ctrcTeMe ~axrrio 
AAa OnTHMH3alQiH ITpOuWCa. PaHee paC'reTbI Te'reHH8 npOBOAHAHCb C nOMOmbi0 aWMnTOT,,WCKO~ 

armnrrrn~ecxo8 annpoxctiMaum4 n anpe mm c npnhteriemieM nsyMepuor0 pememin B nnocKocrH CHM- 

Merpm~Jla3ep-AonrurepoBcKHe aHeMoMeTpwecKrre rrccnenonamin,nenaauo r3bmonnemrbre lIhp0~ti~ H 
PO3epH6eprepOM, nOKa3aJm, YTO B AefiCTBHTeAbHOCTH CBO6OAHO-KOHWKTHSHbIe TeYeHHK B yKa3aHHblX 

KOH@HrypaWIX IIBJTIIIOTCII TpeXMepHbtMH. B HaCTOamefi pa6ore 3KCnepHMeHTaJbHbre pe3yJTbTaTbt AJM 

CpeAHerO KpyrOBOrO CeYeHHR H AaHHbIe, nOJtyKeHHble H3 TpeXMepHbrX 'IHCAeHHbIX pe.meHH@ CpaBHH- 

BaIOTCR C pemeHHKMH, nOAySeHHYMH H3 paHee ynOMHHaBmHXCa annpOKCtibfauHk PaCCMaTpHBaIoTCa 

pe)KHMbl TereHrrii a anpe nOTOKa H nOrpaHHYHOM CJlOe. B 06meM CAyrae 3TH annpOKCHMauHH AaloT 

TO'tHyKI 3aBHCHMOCTb CKOpOCTefi OT WiCJta k+JleK B yKa3aHHbtX AByX peIKHMaX.OAHaKO,HafiAeHO, 4TO 

nepeXOAHOfi npO,,@.% MeXCAy pe4HMaMH, a TaK2Ke BeAHYHHa B paCnpeAeAeHHe KOMnOHeHT CKOpOCTk, 


