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Abstract——Cylindrical, differentially heated and horizontal enclosures are commonly used in technological
processes. A knowledge of the flow patterns in such a system is important for process optimization. In the past,
flow predictions have often been made by using an asymptotic analytical approximation in the core, or by
assuming a two-dimensional solution for the plane of symmetry. Laser Doppler anemometry studies, recently
conducted by Schiroky and Rosenberger, have shown that in reality the free convection fiows in the above
configuration are highly three-dimensional. Here we compare the results for the vertical midplane obtained
from the experiments and from 3-D numerical solutions with solutions of the aforementioned approximations.
Both the core-driven and boundary layer-driven regimes are considered. In general the approximations give
the correct Rayleigh-number-dependence of the velocities in the two regimes. However, the transition between
the regimes and the magnitude and distribution of the velocity components were found to significantly depend
on the 2-D approximation used.

1. INTRODUCTION

THE FREE convection in shallow rectangular cavities
(boxes) and horizontal cylinders with differentially
heated end walls has been studied experimentally,
analytically and numerically by many workers. Part of
this interest is due to the importance of these convective
configurations in liquid- and vapor-phase crystal
growth [ 1-4]. Analytical solutions for long rectangular
cavities, based on a parallel flow approximation, were
first proposed by Birikh [5], Hart [6], and Klosse and
Ullersma [1]. The interaction between free convection
and a net flow (forced diffusion) across cylindrical or
two-dimensional (2-D) cavities was studied numeri-
cally by Rosenberger et al. [7-10]. Most of the recent
work on free convection in closed shallow cavities is due
to Bejan, Cormack, Imberger, Kimura, Shih, Tien et al.
[11-20], Ostrach et al. [21,22] and Hart [23]. The core
flow theory of Bejan and Tien [ 14, 15] was extended to
higher Rayleigh numbers with simplifying models for
the flow near the end walls of 2-D cavities [24] and
cylinders [25]. Experiments on rectangular cavities
[26] and horizontal cyiinders [25] have demonstrated
the applicability of Gill’s theory for free flow near
vertical infinite plates [27] to the end regions of these
confined geometries. Recently, laser Doppler anemo-
metry studies [25] have shown that both in the core-
and boundary-layer-driven regimes (CDR and BLDR)
the flow in cylinders is highly three-dimensional, in
contrast to the flow in rectangular boxes [17, 22].
Similar to the observations in boxes, however, it was
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found that the core flow in the cylinder tilts with respect
to the horizontal on transition to the BLDR. Extensive
2-D numerical work has been aimed at predicting the
transition between the two governing regimes [11, 19,
20, 28-30]. In our recent 3-D numerical modeling of
free convection in cylinders [31] good agreement was
obtained with the complex flow observed experimen-
tally [25].

The aim of the present paper is a comparison of the
flow characteristics for the CDR and BLDR in
rectangular cavities and cylinders of aspect ratioa = 5
at Pr = 0.73. The aspect ratio is here defined as the
horizontal length of the enclosure divided by the height
of the heated end walls, i.e.a = L/H and a = L/2R for
the rectangular cavity and cylinder, respectively. The
comparison is based on the experimental, analytical
and numerical results for the characteristic velocity
distributions, the velocity boundary-layer thickness in
the end regions and the temperature gradient in the
core. Emphasis is put on the question of the validity of
2-D models for the flow in the vertical midplane of the
cylinder. A similar comparison for tall rectangular
boxes (@ < 1) has been put forth by Mallinson and De
Vahl Davis [32].

2. PHYSICAL MODELS

The two geometries of interest, a shallow rectangular
cavity of height H and a cylinder with radius R, both of
length L, are schematically depicted in Fig. 1(a). The
vertical end walls are differentially heated to T, and 7,
with T, > T.. The horizontal walls are assumed to be
perfectly conducting. The physical parameters that
govern the flow are contained in the Prandtl number Pr
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a aspect ratio, @ = L/H or L/2R,

b constant defined in Section 3.3,
dimensionless

c GilP’s free constant defined in Section
3.3, dimensionless

¢ constant defined in Section 3.2 for
equation (7)

g gravitational acceleration [m s~ 2]

h characteristic length in Ra, h = H/2 or
Ro[m]

H height of rectangular enclosure [m]

k dimensionless parameter, equation (15)

ky core parameter (dimensionless axial
temperature gradient)

160 H 6T Ry 6T

'T20: 2AT oz AT 0z

k, dimensionless constant, equation (9)
L length of the rectangular cavity of

cylinder [m]
m dimensionless parameter, equation (15)
Pr Prandtl number, v/x
0 dimensionless parameter, equations (4)
and (6)

f,r  dimensional [m] and dimensionless
radial position, r = #/R,

R, radius of cylinder [m]

Ra  Rayleigh number, agATh*Pr/v?

Ra, critical Ra for transition from CDR to

BLDR
T dimensional temperature [K]
T., T. temperatures at the hot and cold walls
T o
Ty reference temperature 1/2(T, + T.) [K]
AT T,-T.[K]
#,w velocity components in x-, z-directions
[ms™']

, U, w velocity components in r-, ¢-,
z-directions [m s~ 1]

dimensionless velocity components in
x-, z-directions, u = aH/2x, w = wH/2x

NOMENCLATURE

u, v, w dimensionless velocity components in
r-, ¢-, z-directions, u = tiR/x,

v = DRy/K, w = WRy/K

position components [m]
dimensionless position components,

x = 2%/H or X/R,y and z = 2z/H or /R,
dimensionless axial position, equations
(12) and (15).

® ¥
[T T

N,

Greek symbols
o coefficient of volumetric thermal
expansion [K ~1]
B dimensionless vertical temperature
gradient in the middle of the enclosure,
a d6/ox
o extent of end region, dimensionless
5 characteristic flow thickness defined in
Section 5.4 [m]
& dimensionless function defined in
Section 3.2
thermal diffusivity [m? s~ 1]
dimensionless parameter, equation (5)
kinematic viscosity [m? s 1]
azimuthal position component
dimensionless parameter, equation (15)
dimensionless temperature,
AT —-T,)/AT.

DV H =X

Subscripts
c critical
max maximum.

Superscripts
cond conduction regime
bl boundary-layer regime
2D, 3D Two- and three-dimensional.

Abbreviations
BLDR boundary-layer-driven regime
CDR core-driven regime.

and Rayleigh number Ra, based on a characteristic
length h, which is taken as R, for the cylinder and H/2
for the cavity.

The coordinates x and z for the cavity are oriented
vertically and along the symmetry axis, respectively,
and are associated with the velocity components @ and
w. The cylinder coordinates 7, ¢ and Z are radially,
azimuthally and axially oriented with the correspond-
ing velocity components 4, # and w. For the following
analyses the coordinates and velocities are non-
dimensionalized as defined in the Nomenclature. The
vertical midplane, which is also the symmetry plane for
the flow in the cylinder, is defined by 0<r <1,
0<z<2a ¢=0 and = [Fig. 1{a)]. The overall

Fi1G. 1(a). Differentially heated horizontal, rectangular cavity
and cylinder: definition sketch for dimensions, position
coordinates and velocity components.
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Fi1G. 1(b). Schematic presentation of overall flow pattern in
differentially heated, horizontal cylinder.

characteristic of the flow, as derived from the
experimental results [25] and an analysis of the
computed solution [33], is schematically given in Fig.
1(b). One sees that in the end regions only part of the
fluid flows along the cold (hot) vertical wall into the
lower (upper) half of the cylinder. The remaining part
changes the flow direction by dropping (rising) at the
side wall over a considerable distance from the
respective end wall.

3. ANALYTICAL MODELS

Analytical approximations for the velocity profile
are available for the core of differentially heated
rectangular cavities and cylinders. These approxima-
tions are based on temperature gradient parameters
derived from experiments and analyses.

3.1. Core flow velocities

Parallel flow solutions, valid for the core of
rectangular cavities and long cylinders, were proposed
by Klosse and Ullersma [1], Birikh [5], Hart [6], and
by Bejan and Tien [14, 15]. Elaborate approximations,
allowing for secondary flows in cavities, were given by
Cormack et al. [12]. The existence of these secondary
flows was experimentally confirmed by Ostrach et al.
[22]. Bejan and Tien [15] and Shih [18] included some
interaction with the end regions. These core solutions
are still limited to the S-shaped profile for the
horizontal velocity component. Further improve-
ments, which remove this limit for higher Ra
conditions, are due to Tichy and Gadgil [24]. For
cylinders, Schiroky and Rosenberger [25] proposed a
third-order power series in Ra which well predicts the
shift of the maximum in the core velocity towards the
wall for the low Ra-range of the BLDR regime.

The analytical expressions for the core flow
(horizontal velocity) used in our comparison are given
in Table 1 and are numbered (1)-(3). They depend on
the core parameter (axial dimensionless temperature
gradient) k.

3.2. Determination of k,

3.2.1. For rectangular cavities. For the CDR up to
the beginning of the BLDR, Cormack et al. [ 12] derived
an expression for k, in terms of Ra® and a [relation (4) in
Table 2]. For the fully developed BLDR, Bejan and
Tien[15] proposed a Ra™ */* dependence [relation (5)].
Morerecently, Hart [23] derived from Cormack et al.’s
work an expression for k, that is valid for the whole
CDR and BLDR range [relation (6)]. The expression is
implicit but, for large values of Ra, one recovers the

Table 1. Analytical expressions for the dimensionless horizontal core velocity

Power series approximations

Equation Geometry 1st order 3rd order References
1
) Rec}angular w2D gklRa (2 —1x [1]
cavity {5
61
[15]
. 1
() Cylinder w3l — 3 k,Racos ¢(r*—1)r [14]
_ 1 (k,Ra)® 143 3
3 Cylinder w3 — —k Racos ¢p(r*—1 —— [0 e
®) y g kuRacos o=~ 1yr 1,474560Pr |\ " Tes0” T4”
JA 125, 201, 4
o T T tis)reose
1 1 3 1 17
- - .1 e g2 _
+(28' AT 4'+21o>
xrd cos? ¢] [25]
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Table 2. Expressions for k,

Wall
Equation Regime Approximation Parameter condition  References

4 CDRand Kk, = 1 (1-128Q Ra?*/a%) 10%Q = 1.74 conducting [12]
beginning 2a
of BLDR

(55 BLDR k, = 875 y'*°Rq ™35 y=10 insulating [15]

6) CDR 1024Ra*Qk? +2ak, = 1 10°Q = 1.70-2.23  conducting [23]
and BLDR

explicit relation
k, = (1024Q)" 3Ra~ 23,

which is independent of a, as Bejan and Tien’s relation.
Note that all these expressions, given in Table 2, depend
on some adjustable parameters that are connected to
some mean properties of the flow. Values of these
parameters have been numerically obtained by the
authors listed, by solving the 2-D governing equations
with finite-difference techniques.

3.2.2. For cylinders. The end-integral method has
been applied to the determination of k, in rectangular
cavities by Bejan and Tien [ 15, 34]. Here we outline its
application to the cylinder, for details see [35].

The governing equations in cylindrical coordinates
are given in the literature [14, 18]. Assuming centro-
symmetry and parallel flow in the core, the velocity field
is given by u = v = 0 and the first-order power series
term for w (Table 1). For the region at the cold end
defined by 0 < z < 4, velocity profiles are assumed for
u,vand w which obey the no-slip condition on the walls
and match the core solution at the arbitrarily chosen
z = ¢ with zero slope. The following profiles fulfill the
continuity equation

2
u= 3R2aék1 (g —1) g(r——l)2 cos ¢

3Rak, (z 2z .
- 21 2=t 2r—

% (6 )6(r )é(r?+2r—1)sin ¢

Rak, z\? z z\?
__B4%aff) g2 Z
w55 2641 G)

x(r?—1)rcos ¢. (7a)

The temperature profile can then be written as

Ra k? 1+2
6={— 4% (r4—3r2+2—+ c)rcosd)
1+c¢

81
+2k2} e+2kz—1, (7b)

where ¢ = 1 in the core, and in the end region

zZ\ 2z

The coefficient ¢ in (7b) is zero for conducting walls and
¢— o for adiabatic walls. The thermal boundary
conditions in the core (i.e. at z = J) are then matched
with a slope related to k,. For this one assumes the
centro-symmetric temperature field

2%, = 1—2k,a.

®

©)

An integration of the energy equation over 0 < z < 4,
0 <r<1landO0 < ¢ < 2n then yields

0.00233Rak? —12.566k,/8 = 0. (10)

After eliminating the pressure between the radial and
axial momentum equation, and the azimuthal and axial
momentum equations, respectively, the two resulting
equations are combined to yield a unique momentum
condition. Integration within the above limits then
gives

0.8378k, 3 +2.0944k, —0.6732k, /5> = 0.  (11)

The integration of the energy and momentum
equations was performed by using the algebraic
computer language REDUCE [36]. While it is not

Table 3. Analytical expressions for the vertical flow

Equation Solution Regime References
k . , . )
(12) u(%) = — (sin mZ cosh mz — p cos mz sinh m) [37]
a [38]
R
(13) wz) = — 228 (5 -~ 1) (f —2> conducting  [37]
12 \a a (small Ra, [38]
m—0)
o mz
(14) u(z) = —\/iczRa”2 sin—e™™"* 0<z<a boundary
a layer
(high Ra,
m>»1,
B = ab) [27]
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F1G. 2. Calculated dimensionless axial temperature gradient vs Rayleigh number for differentially heated
cylinder with conducting and insulating walls, respectively.

possible to give an explicit expression for k,, it can be
numerically evaluated from equations (9)«(11). The
resulting values of k, are plotted vs Ra in Fig, 2, for
conducting and adiabatic conditions and a = 5. Shih
[18] also attempted to calculate k, for the cylinder with
the end-integral technique. However, his assumed
velocity profiles for the end regions do not satisfy all
boundary conditions and violate the continuity
equation.

3.3. Vertical flow along differentially heated walls
Assuming steady-state parallel flow and weak
vertical diffusion of temperature, Elder [37] has
obtained the first similarity solution for free convection
between two parallel vertical plates. The solution,
denoted (12), is given in Table 3, together with the two
asymptotic limits corresponding to the conduction
regime [solution (13)], and the boundary-layer regime
[solution (14)] obtained by Gill [27]. Following Vest
and Arpaci [38] the new parameters in Table 3 are

7 =zfa—1, m=(a®fRa/8)'*,
mZ
k=— e (cos m sinh m+ p sin mcosh m)~1,

p=tanm/tanh m, 19

The solution (12) needs to be complemented by a
relation between the thermal stratification parameter
in the vertical direction, § and the aspect ratio a. From
numerical results of Thomas and De Vahl Davis [39]
and Roux et al. [40, 417 follows

g ~ 7.6 x 10~ %a*2%Ra)"""% for a*2?%:-Ra <50

~08 for a*2%-Ra 3z 50.

2™

(16)

In (14) the coefficient ¢ is a fitting parameter. From
numerical results for a square cavity (a = 1), ¢ = 0.8
[41]. From Elder’s theory it follows that ¢* = 1/2,/b,
where b results from the boundary-layer relation
B/a = b. From (16), b = 0.8 and, hence, ¢ = 0.748.

4. EXPERIMENTAL AND NUMERICAL WORK

4.1. Experimental data [25]

Experimental results were obtained for a gas-filled
cylinder with a = 5 (R, = 1 cm, L = 10 cm). The end
wall temperatures were T, = 27°Cand T, = 89°C. The
velocity field was determined by laser Doppler
anemometry. The Rayleigh number was varied
through the pressure and composition of the gas fill
(0.68 < Pr < 0.86)from 74 < Ra < 1,283,000. Centro-
symmetry was observed for the velocity field within
experimental resolution. This is somewhat at variance
with our more recent measurements of the axial
temperature distribution, that reveal a certain
asymmetry between thehot and cold regions [31]. Such
an asymmetry can be expected from the thermal
expansion of the gas and/or variations of the physical
properties as numerically shown for a rectangular
cavity by Leonardi and Reizes [42], but can also be due
to heat losses mainly at the hot end as shown by
Leonardi [43].
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Table 4. List of reported numerical methods

Governing Variables
Method Model hypotheses  Formulation Method References (r, @, z)/(x, 2)
1 3D Boussinesq ; vorticity, centered finite-differences [45]7 9x32x33,65
constant velocity Samarskii-Andreev scheme [46] uniform grid
properties false transient [30] spacing

II 2D Boussinesq; vorticity, Hermitian finite-differences [47] 21x41,101
constant stream ADI scheme [48]  uniform grid
properties function false transient [41] spacing

[49]

11 2D Boussinesq ; vorticity, pseudo-spectral-Tau- 10x 14
constant stream Chebyshev [S0] to12x27,
properties function Adam-—Bashforth/semi-implicit [51] collocation

scheme ; instationary [52] points

v 2D Compressible;  primitive TEACH method [10}] 16x32
constant variables two different
propertics uniform grid

spacings

4.2. Numerical methods

The numerical works for rectangular cavities (2-D)
and cylinders (3-D), that we will use in the comparison
below, are listed in Table 4 together with the essential
features of the approaches taken.

5. PRESENTATION AND DISCUSSION OF
RESULTS
The governing parameter in all core-flow theories is
the horizontal stratification parameter k,. Hence, it will
be discussed first. Although these theories become less
and less meaningful as Ra increases, k; can still be
considered as a variable that is characteristic for the
thermal state in the enclosure. Then, we will discuss

the Ra-dependence of the magnitude and profile of the
velocities in the core and end regions, for which, at high
enough Ra, one obtains boundary-layer behavior.

5.1. Temperature gradient in the core
The results for

. _169(_R0 T

V72 08z\ AT oz AT 07

H a'T)

are plotted in Fig. 3. They refer to the experimental,
analytical and numerical works listed in Table 5. The
3-D results for the cylinder correspond to a =35,
experimental details are given in [25, 35] and the
computational approach is described in [31, 33]. The

1 a_I14IIJ T ]II[ T Illl T IIII T ll'] i ||ll T
< F * e g a i
- \8\ ae 5 exper, [25]
P4
5 - ~ g0 5 numer. [31] 7
- ] 05 ¢ S
2 10 1 ~—
g Lo  Ua - —
20
w
« i » a
ot —— 2
s r S a
o 1100 z
w n — O a
:
w B 3V
l— -3 oy
- 107 S d
= o 3 1 con - [a1]
% B :5 o 1 insul.
< O + 556 [44]
| © X 5 numer. (meth.II,II)
10 1 11_1_1 1 Lol ) 1||| 1 Lo ! L] 1
10 10® 10° 10* 10° 108 107

RAYLEIGH NUMBER

F1G. 3. Dimensionless axial temperature gradient vs Rayleigh number for cylinders and rectangular cavities of
various aspect ratios: comparison of experimental, analytical and numerical results.
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Table 5. Experimental, numerical and analytical determination of k,

Geometry Approach Aspect ratio Pr References

Cylinder experiments, 5 0.68-0.85 [25]
numerical solutions, [31]

analytical

solutions
Rectangular experiments 50, 100 6.98 [13]
box 5,10 960, 1910 [21]
Rectangular analytical 5,10 — [12]
cavity results — — [15]
computations S, 10, 50, 100 — [23]
5,10, 20 6.98 [11]
5.56 0.526 [44]
1 0.71 [41]

amount of data for the 2-D problem is much larger, with
aspect ratios ranging from 100 to 1 and with Pr varying
between 0.5 and 1900 {11, 13, 21, 41, 44].

The relations (4)(6) given in Table 2 for the 2-D case
are plotted in Fig. 3. A comparison of experiments and
computations at large Ra shows fair agreement for the
onset of the BLDR and the a-independence. The results
for the transition to the BLDR for a = 5, 10 [11, 21]
derived from (6) [23] approximate the experimentally
and numerically obtained k;s better than (4) [12]. In
the fully-developed BLDR, the data obtained for
1 € a < 100 lie roughly between the curves obtained
from (5) and the explicit relation derived from (6) at
large Ra in Section 3.2.1. The last result thus forms a
lower limit for k, vs Ra.

For cylinders, the results derived from Section 3.2.2
for a =5 with conducting side walls show that k;
decreases much slower with increasing Ra than for the
2-D case. At a given Ra (in BLDR) the k, from the 3-D
analytical estimate, [35] and Fig. 2, is about 1.6 times
larger than from 2-D analysis. However, as compared
to the 3-D numerical and experimental results, the 3-D
analytical k, result is still roughly three times too small
at Ra = 18,700. For Ra < 30,000 the experiments and
numerical predictions agree quite well. Interestingly,
the transition from CDR to BLDR occurs ‘in reality’
(3-D experiments and numerical modeling) at about 10
times higher Ra than in the 2-D systems. The value of
k, is then 2-5 times larger than the k, derived from
2-D considerations.

5.2. Velocity in the core region

Analytical solutions for the maximum values of the
horizontal velocity component w can be derived from
(1) and (2), Table 1, respectively, as

wil | = Rak, at x = ii 17
9./3 3
and
Rak 1
wib | = 251 for ¢=0,7 (18)

12\/5 at r=f

The relations (17) and (18), evaluated with the

HMT 29:2-E

conduction conditionk; = (2a)”fora = 5,areplotted
in Fig. 4 together with the experimental and numerical
results. In addition, Fig. 4 contains plots of (18) and
the corresponding relation derived from (3), both
evaluated with the analytical values obtained for k,
from (9)-(11); see also Fig. 2.

An analysis of these curves, together with the
experimental and numerical data plotted in Fig. 4,
results in the following observations:

(a) The experimental and 3-D numerical results
(method 1 in Table 4) agree well over the whole
range covered by the numerical data, ie.
74 < Ra £ 30,000. The 2-D numerical results
(methods IL III and IV), however, show significant
deviations from these 3-D results, not only—as
expected—in the CDR but also in the BLDR.

(b) The 2-D numerical ‘compressible solutions’
(method IV) are in good agreement with the
solutions obtained from the Boussinesq approxim-
ations (methods IT and III) in the range of Ra values
for which computations were carried out.

{c) At low Ra (in the CDR) both 3-D analytical
solutions, (2) and (3), yield good predictions. The 2-
D solution (17), though correctly reflecting the
linear dependence of w,,,, on Ra, overestimates the
velocity by about 309, with respect to the cylinder;
see the ratio of (17) and (18). This reflects the
increased frictional interaction of the flow due to
the relatively larger wall area of the cylinder.

(d) Athigh Ra (i.e.in the BLDR) the experimental and
3-D numerical results for the core velocity vary as
Ra'/?, parallel to Gill’s boundary-layer relation (14)
for u, see also Fig. 9. The velocity in the cylinder is
about 1.5 times larger than the 2-D numerical
solution, which, however shows a realistic Ra-
dependence. The velocities obtained from the
analytical solutions (18) and (3) with ks determined
by (9)(11), are too low. Their Ra-dependence is
Ra®4° and Ra®**, respectively.

(e) If wedefine a critical Ra, for the transition between
CDR and BLDR, then we find from Fig. 4 thatfor a
=5, Ra?P ~ 2000 whereas Ra3P = 6000, ie. a
factor of about 3 between 2-D and 3-D behaviors.



234 P. BoNTOUX et al.
103 T T 17 T Illl T T 1717 T llYl T Y lvnl T
3 - A
g K, const. 2D (1) /‘ .
2 L 3-D (18) LR
g
102 - /‘/"' —
L 'o 'm«.“' 4
" " 3-D(18), 3-D(3) |
o “ .
10 boundary layer Kk, (Ra)

Upmax (20)

max

DIMENSIONLESS AXIAL VELOCITY

lllI 1 Ill[ |

1072

Illl

A& 3-D exper. [25]
O 3-D numer. [31]
0 2-D numer., method I
¢ 2-D numer., method IV

| Illl I Illl 1 lII| 1

1 10 10?

10°

10* 108 10°

RAYLEIGH NUMBER

FIG. 4. Maximum value of dimensionless axial velocity (core velocity) vs Rayleigh number : comparison of
experimental, analytical and numerical results.

The above points are further illustrated in a series of
w(r)-profiles for discrete, increasing Ras in Figs. 5-8.In
Fig. 5 one sees that in the CDR (Ra = 660) the 3-D
analytical results, i.e. (2) and (3), agree well with the
experimental and numerical values. The 2-D numerical
values (methods II, III and IV in Table 4) lie too high.

At the upper end of the CDR (Ra = 3580, Fig. 6) the
2-D and 3-D numerical results are in very good
agreement with experiment. The analytical predictions
(2) and (3), based on k,s obtained from (9)(11), are too
low. However, when (2) and (3) are evaluated with
numerically obtained k,s [31], agreement in magni-

tude is restored, with (3) yielding a more realistic
distribution.

At Ra = 8860 (Fig. 7), the 2-D numerical and 3-D
analytical velocity profiles differ strongly from each
other and from experiment. Besides the different
magnitudes, there are also distinctions into ‘S-shapes’
and ‘Z-shapes’. At this Ra the analytical approaches are
simply unable to yield realistic results either with
analytically or numerically obtained k, values.

This trend is further emphasized by the results for
Ra = 18,720 presented in Fig. 8. Yet it is noteworthy
that the evolution of the Z-shape from the S-shape

4 T T T T T T T T
It A =
g Ak, Ra =660
5 ;
1=
> 09
=
S ®  3-D numer., method |
9 -0 & 3D exper. [25] = + —
w
> X A+ 2-D numer. methods I, lll, IV MLRT Sa
:tJ —— 3-D analyt. (2}
X -4F 3-D analyt. (3) B
<

i 1 1 ] ] ] ! 1
-10 -8 -6 -4 -2 0 2 4 6 8 10

RADIAL POSITION

r (mm)

F1G. 5. Core velocity profiles for Ra = 660.
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(boundary-layer trend) occurs slower for 2-D than for
3-D solutions. For all four figures one should point out,
however, the good agreement between experiment
and 3-D numerical solutions obtained with only a
9 x 32 x 33 mesh for r, ¢ and z, respectively.

5.3. Velocity in the end regions

Analytical solutions for the maximum of the vertical
velocity component can be obtained from the limiting
cases of Elder’s general solution (12). From (13) and (14)
of Table 3 we obtain for the conduction and boundary-

&)
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ky analyt. (9-11)
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FiG. 7. Core velocity profiles for Ra = 8860.
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layer limit, respectively,

NG

These relations, together with the experimental and
numerical results, are plotted in Fig. 9. An analysis of

¥4
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It = a*Ra \/3/54  at =1+ 9 ihis figure reveals that
a 3
and a) experimental and 3-D numerical results agree fairl
y
o 2 a2 ” e well in the CDR up to Ra = 2000 [see also (f)
jubl] =c*e "4Ra'? at Az=rnc2”**Ra” below];
(20) (b) all resuits show a proportionality to Ra up to
Ra ~ 2000, parallel to w,,,, obtained from (18), see
with ¢ = 0.8. also Fig. 4;
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FiG. 9. Maximum value of dimensionless vertical velocity vs Rayleigh number : comparison of experimental,
analytical and numerical results.
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(c) the 2-D numerical results that are based on the
Boussinesq approximation lie throughout their
range (74 < Ra < 20,000) considerably above the
experimental cylinder values;

the compressible solutions (method IV, Table 3)do
not verify centro-symmetry but the difference does
not exceed 5% in the end regions. Compressible
results are below those for Boussinesq approxim-
ations over the entire range of Ra. This is to be
compared with the reduction of the convection
velocity observed by Leonardi [43] with the
introduction of variable density and viscosity.
Above Ra = 10* the compressible results have a
dependence of Ra®*%, thus slightly exceeding the
dependence found for the 3-D results.

above Ra =~ 6000 all results change from the linear
behavior to an (approximate) Ra'/2-dependence.
(Note that the 3-D numerical results correspond to
the first mesh pointinside the cylinder,i.e.to alarger
distance from the wall than the location of u,,,
hence the low values.)

the 2-D analytical relations (19) and (20) predict the
transition to a boundary-layer-type flow to occur at
Ra an order of magnitude too low.

@

©

0

An analysis of the experimentally determined
velocity profiles u(z) in the end region, was performed
elsewhere [25]. It was found that at high Ras the shape
and magnitude in the vertical midplane of the cylinder
follow closely Gill’s relation (14), ie. they exhibit
boundary-layer behavior.

5.4. Characteristic flow thickness

We define a characteristic flow thickness, & as the
distance between a wall and the location of the
maximum in the velocity component parallel to that
wall. This parameter provides a different means of
monitoring the transition from CDR to BLDR. For the
end walls and side walls, respectively, we use the non-
dimensionalized

3w)
2R,

3w)

S(w)
H —

L

and

Figure 10 shows these parameters evaluated from the
experimental and numerical data together with plots of
the analytical solutions (19)+20). Also we show the
asymptotic location of 3(w) corresponding to (3) in the
form

5(w)

2R, = 0.1065.

As can be expected from Figs. 5-8, the 3-D numerical

characteristic flow thickness in the core agrees well with
the experimental value up to the highest numerical
point, Ra = 30,000. The velocity maximum is shifted
towards the wall with increasing Ra. At very high Ras,
the experimental 5(w) tend towards the asymptotic
relation (21) although the magnitude of the velocity
maximum expected from (3) is much lower than the
actual value; see e.g. Figs. 7 and 8. Also, for the 2-D
numerical solution (17) the transition from the CDR
occurs at higher Ra than for the 3-D solution.

@y
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The vertical thickness &(u)/L follows roughly a
Ra~'*trend, as predicted by Gill'’s analysis (20), bothin
the CDR and BLDR. This shows that in the end region
the boundary-layer ‘structure’ sets in at rather low Ra,
whereas the magnitude of the velocity maximum is still
governed by the core mechanism up to Ra ~ 2000; see
also Fig. 9. Note also that the 2-D and 3-D numerical
solutions give similar values for 3(u)/L although their
values for the magnitude of the velocity are quite
different.

6. CONCLUSIONS

The detailed comparison presented here shows that
2-D approximations can present the flow in the vertical
midplane of a horizontal cylinder only rather poorly.

In the core driven flow regime both the core and
the end region velocities are overestimated by typi-
cally 30%, although the location of w,,, is well
approximated.

In the boundary-layer driven regime, 2-D solutions
show a more complex behavior:

(a) core velocities are underestimated by typically 40—
509% and the velocity profile is only poorly
approximated with too little shift of the maximum
towards the wall;

(b) end velocities are overestimated by typically 30—
40%;, with the actual velocity maximum again lying
closer to the wall.

The Ra for the transition between core and
boundary-layer mechanism for the core velocity is
underestimated by the 2-D solutions; for an aspect
ratio of a=5 considered here, the values are
Ra?P 2 2000 and Ra3" =~ 6000. The end velocity, u,
however, shows boundary-layer-like behavior through-
out the whole Ra range investigated.
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CONVECTION DANS LE PLAN MEDIAN D'UN CYLINDRE HORIZONTAL—
COMPARAISON D’APPROXIMATIONS BIDIMENSIONNELLES AVEC LES RESULTATS
TRIDIMENSIONNELS

Résumé —Des enceintes chauffées, horizontales cylindriques sont couramment utilisées dans I'industrie. La
connaissance des configurations d’écoulement dans un tel systéme est importante pour I'optimisation du
process. Dans le passé, les prédictions d’écoulement ont été souvent faites en utilisant une approximation
analytique asymptotique dans le coeur, ou en supposant une solution bidimensionnelle pour le plan de
symétrie. Des études d’anémonétrie Laser Doppler, récemment faites par Schiroky et Rosenberger, montrent
que les écoulements de convection naturelle sont fortement tridimensionnels. On compare ici les résultats
obtenus, pour le plan médian vertical, par les expériences et par les solutions numériques 3D, avec les
approximations citées, On considére 4 la fois les régimes gouvernés par le coeur et ceux par la couche limite. En
général, les approximations donnent la dépendance correcte des vitesses avec le nombre de Rayleigh dans les
deux régimes. Néanmoins la transition entre les deux régimes, le module et la distribution des composantes de
vitesse sont trouvés nettement dépendre de I'approximation 2D utilisée.

KONVEKTION AN DER SENKRECHTEN MITTELFLACHE EINES WAAGERECHTEN
ZYLINDERS—VERGLEICH VON ZWEIDIMENSIONALEN NAHERUNGEN MIT
DREIDIMENSIONALEN ERGEBNISSEN

Zusammenfassung —Teilweise beheizte waagerechte zylindrische Hohlriume werden in technischen
Prozessen oft eingesetzt. Die Kenntnis der Stromungsvorgénge in solchen Systemen ist wichtig fiir die
Optimierung der Prozesse. Bisher wurden Strémungsberechnungen oft mit Hilfe eines analytischen
asymptotischen Naherungsverfahrens im Kern oder unter Annahme einer zweidimensionalen Lsung fiir die
Symmetrieebene durchgefiihrt. Messungen mit Laser-Doppler-Anemometern, die kiirzlich von Schiroky und
Rosenberger durchgefiihrt wurden, haben gezeigt, daB die Konvektionsstrémungen bei der obigen
Anordnung in Wirklichkeit ausgeprigt dreidimensional sind. Wir vergleichen hier MeBergebnisse und
dreidimensionale Rechenergebnisse mit den Losungen der oben genannten Niherungen. Sowohl Kern- als
auch Grenzschichtbereiche werden betrachtet. Generell liefern die Ndherungen die richtige Abhiingigkeit der
Rayleigh-Zahl von den Geschwindigkeiten in den beiden Bereichen. Das Ubergangsgebiet zwischen beiden
Bereichen sowie Betrag und Richtung der Geschwindigkeitskomponenten hiingen jedoch entscheidend von
der Art der zweidimensionalen Naherung ab.

KOHBEKLIMA B CPEAJHEM KPYI'OBOM CEYEHWM I'OPU30OHTAJIBHO
PACIIOJIOXEHHOI'O UMJIUMHIPA. CPABHEHHME PE3VJILTATOB TPEXMEPHbBIX
PEIIEHUN C PEINEHUSAMHU ABYMEPHON 3AJIAUM

AmmoTaums—B TexHONOrHYECKHX mMpoueccax OOBMHO NPHMEHAITCA LUHIHHAPAYECKHE FOPH3OHTAIbHBIE
0JIOCTH C HEPABHOMEPHO HATPEBAcMBIMH CTEHKAMH. 3HAHHE DEXHMOB TE€YEHHS B TaKOM CHCTEME BAXHO
Ul ONTHMH3aUMM npouecca. Panee pacyernl TeueHHH NPOBOAMINCL C TOMOILBIO ACHMITOTHYECKOH
AHAJIMTHYECKOR aNMpoOKCHMALMK B SOpe MIIH C IPHMEHEHHEM JBYMEPHOTO PelLleHHs B [UIOCKOCTH CHM-
MeTpHH. Jlazep-1onnaepoBCKHE aHEMOMETPHYECKHE HCCIIENOBAHMS, HEAABHO BLINOJIHeHHbIe [lInpokum u
Po3sepubeprepom, noxasany, 4To B AeHCTBHTENLHOCTH CBOGOAHO-KOHBEKTHBHBIE TEYCHHA B YKA3aHHBIX
KOHGUrypauHax ABASIOTCA TpeXMepHEIMA. B HacToswell paGoTe 3KCNIEPHMEHTANBHBIE PE3YIbTATHI A
CPEIHEro KpYroBOTO CEYEHHS H [JaHHbIE, MOJYuYCHHbIE H3 TPEXMEPHBIX YHCJIEHHBIX PEUICHHH, CPaBHH-
BAIOTCA C PELUCHHAMH, NMOJYYCHHBIMH H3 paHee YMOMHHABIIMXCA annpoxcamauui. PaccMaTpuBarorcs
pexumbl Tedennii B sape NoToka M NOrpaHHYHOM cioe. B oblueM ciydae 3TH annNpoKCHMaUMH OaroT
TOYHYIO 3aBHCHMOCTb CKOPOCTeil OT uKcna Pajes B yxazaHHbBIX IByX pexumax. OnHako, HaiineHo, 4To
NepeXoqHON MPOLECC MEXY PEXHMAMH, a TaKkKe BEIHYHHA M pacnpenesicHHe KOMIIOHEHT CKOPOCTH
0Ka3bIBaIOT CYLECTBEHHOE BJIMSHAE HA CBOMCTBA HCIOIb3YEMON ABYMEPHOMN annpoOKCHMALHH.



